NASA Announces Landing Site for Mars 2020 Rove…

NASA – Mars 2020 Rover logo.

Nov. 19, 2018

NASA has chosen Jezero Crater as the landing site for its upcoming Mars 2020 rover mission after a five year search, during which every available detail of more than 60 candidate locations on the Red Planet was scrutinized and debated by the mission team and the planetary science community.

The rover mission is scheduled to launch in July 2020 as NASA’s next step in exploration of the Red Planet. It will not only seek signs of ancient habitable conditions – and past microbial life – but the rover also will collect rock and soil samples and store them in a cache on the planet’s surface. NASA and ESA (European Space Agency) are studying future mission concepts to retrieve the samples and return them to Earth, so this landing site sets the stage for the next decade of Mars exploration.

Image above: On ancient Mars, water carved channels and transported sediments to form fans and deltas within lake basins. Examination of spectral data acquired from orbit show that some of these sediments have minerals that indicate chemical alteration by water. Here in Jezero Crater delta, sediments contain clays and carbonates. The image combines information from two instruments on NASA’s Mars Reconnaissance Orbiter, the Compact Reconnaissance Imaging Spectrometer for Mars and the Context Camera. Image Credits: NASA/JPL/JHUAPL/MSSS/Brown University.

“The landing site in Jezero Crater offers geologically rich terrain, with landforms reaching as far back as 3.6 billion years old, that could potentially answer important questions in planetary evolution and astrobiology,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate. “Getting samples from this unique area will revolutionize how we think about Mars and its ability to harbor life.”

Jezero Crater is located on the western edge of Isidis Planitia, a giant impact basin just north of the Martian equator. Western Isidis presents some of the oldest and most scientifically interesting landscapes Mars has to offer. Mission scientists believe the 28-mile-wide (45-kilometer) crater, once home to an ancient river delta, could have collected and preserved ancient organic molecules and other potential signs of microbial life from the water and sediments that flowed into the crater billions of years ago.

Jezero Crater’s ancient lake-delta system offers many promising sampling targets of at least five different kinds of rock, including clays and carbonates that have high potential to preserve signatures of past life. In addition, the material carried into the delta from a large watershed may contain a wide variety of minerals from inside and outside the crater.

The geologic diversity that makes Jezero so appealing to Mars 2020 scientists also makes it a challenge for the team’s entry, descent and landing (EDL) engineers. Along with the massive nearby river delta and small crater impacts, the site contains numerous boulders and rocks to the east, cliffs to the west, and depressions filled with aeolian bedforms (wind-derived ripples in sand that could trap a rover) in several locations.

“The Mars community has long coveted the scientific value of sites such as Jezero Crater, and a previous mission contemplated going there, but the challenges with safely landing were considered prohibitive,” said Ken Farley, project scientist for Mars 2020 at NASA’s Jet Propulsion Laboratory. “But what was once out of reach is now conceivable, thanks to the 2020 engineering team and advances in Mars entry, descent and landing technologies.”

Image above: This artist’s rendition depicts NASA’s Mars 2020 rover studying a Mars rock outrcrop. Image Credits: NASA/JPL-Caltech

When the landing site search began, mission engineers already had refined the landing system such that they were able to reduce the Mars 2020 landing zone to an area 50 percent smaller than that for the landing of NASA’s Curiosity rover at Gale Crater in 2012. This allowed the science community to consider more challenging landing sites. The sites of greatest scientific interest led NASA to add a new capability called Terrain Relative Navigation (TRN). TRN will enable the “sky crane” descent stage, the rocket-powered system that carries the rover down to the surface, to avoid hazardous areas.

The site selection is dependent upon extensive analyses and verification testing of the TRN capability. A final report will be presented to an independent review board and NASA Headquarters in the fall of 2019.

“Nothing has been more difficult in robotic planetary exploration than landing on Mars,” said Zurbuchen. “The Mars 2020 engineering team has done a tremendous amount of work to prepare us for this decision.  The team will continue their work to truly understand the TRN system and the risks involved, and we will review the findings independently to reassure we have maximized our chances for success.”

Selecting a landing site this early allows the rover drivers and science operations team to optimize their plans for exploring Jezero Crater once the rover is safely on the ground. Using data from NASA’s fleet of Mars orbiters, they will map the terrain in greater detail and identify regions of interest – places with the most interesting geological features, for example – where Mars 2020 could collect the best science samples.

The Mars 2020 Project at JPL manages rover development for SMD. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, is responsible for launch management. Mars 2020 will launch from Cape Canaveral Air Force Station in Florida.

Related article:

Scientists to Debate Landing Site for Next Mars Rover:
https://orbiterchspacenews.blogspot.com/2018/10/scientists-to-debate-landing-site-for.html

Related links:

Terrain Relative Navigation (TRN): https://mars.nasa.gov/mars2020/mission/technology/entry-descent-landing/

NASA’s Curiosity: http://www.nasa.gov/curiosity

For more information on Mars 2020, visit:  https://www.nasa.gov/mars2020

More information about NASA’s exploration of Mars is available online at: https://www.nasa.gov/mars

Images (mentioned), Text, Credits: NASA/Dwayne Brown/JoAnna Wendel/Grey Hautaluoma/JPL/DC Agle.

Greetings, Orbiter.ch
Full article

NASA’s Quiet Supersonic Technology Project pas…

Washington DC (SPX) Nov 20, 2018

NASA has officially committed to a development timeline that will lead to the first flight of its X-59 Quiet Supersonic Technology (QueSST) aircraft in just three years.

This critical milestone comes after a rigorous review, Key Decision Point-C (KDP-C), that confirmed NASA’s continued support of the X-59, in terms of funding, and established an achievable development timeline for NASA’s f
Full article

Exploration makes perfect

by Staff Writers

Testing the technology to explore other planets starts on Earth. While robots scout uncharted terrains, moonwalkers analyse rocks and send detailed geological descriptions to mission control. Artificial intelligence gets better with human interaction and the Moon is front of mind.

This is all part of Pangaea-X, an extension of ESA’s Pangaea geology training that puts technology through its
Full article

Photo

Photo

ESO’s VLT captures details of an elaborate ser…

ESO – European Southern Observatory logo.

19 November 2018

Coils of Apep

The VISIR instrument on ESO’s Very Large Telescope has captured this stunning image of a newly discovered massive triple star system. Nicknamed Apep after an ancient Egyptian deity, this may be the first ever gamma-ray burst progenitor found.

This serpentine swirl, captured by the VISIR instrument on ESO’s Very Large Telescope (VLT), has an explosive future ahead of it; it is a Wolf-Rayet star system, and a likely source of one of the most energetic phenomena in the Universe — a long-duration gamma-ray burst (GRB).

“This is the first such system to be discovered in our own galaxy,” explains Joseph Callingham of the Netherlands Institute for Radio Astronomy (ASTRON), lead author of the study reporting this system. “We never expected to find such a system in our own backyard” [1].

Apep in the constellation of Norma

The system, which comprises a nest of massive stars surrounded by a “pinwheel” of dust, is  officially known only by unwieldy catalogue references like 2XMM J160050.7-514245. However, the astronomers chose to give this fascinating object a catchier moniker — “Apep”.

Apep got its nickname for its sinuous shape, reminiscent of a snake coiled around the central stars. Its namesake was an ancient Egyptian deity, a gargantuan serpent embodying chaos — fitting for such a violent system. It was believed that Ra, the Sun god, would battle with Apep every night; prayer and worship ensured Ra’s victory and the return of the Sun.

Digitized Sky Survey image around Apep

GRBs are among the most powerful explosions in the Universe. Lasting between a few thousandths of a second and a few hours, they can release as much energy as the Sun will output over its entire lifetime. Long-duration GRBs — those which last for longer than 2 seconds — are believed to be caused by the supernova explosions of rapidly-rotating Wolf-Rayet stars.

Some of the most massive stars evolve into Wolf-Rayet stars towards the end of their lives. This stage is short-lived, and Wolf-Rayets survive in this state for only a few hundred thousand years — the blink of an eye in cosmological terms. In that time, they throw out huge amounts of material in the form of a powerful stellar wind, hurling matter outwards at millions of kilometres per hour; Apep’s stellar winds were measured to travel at an astonishing 12 million km/h.

These stellar winds have created the elaborate plumes surrounding the triple star system — which consists of a binary star system and a companion single star bound together by gravity. Though only two star-like objects are visible in the image, the lower source is in fact an unresolved binary Wolf-Rayet star. This binary is responsible for sculpting the serpentine swirls surrounding Apep, which are formed in the wake of the colliding stellar winds from the two Wolf-Rayet stars.

Zooming in on Apep

Compared to the extraordinary speed of Apep’s winds, the dust pinwheel itself swirls outwards at a leisurely pace, “crawling” along at less than 2 million km/h. The wild discrepancy between the speed of Apep’s rapid stellar winds and that of the unhurried dust pinwheel is thought to result from one of the stars in the binary launching both a fast and a slow wind — in different directions.

This would imply that the star is undergoing near-critical rotation — that is, rotating so fast that it is nearly ripping itself apart. A Wolf-Rayet star with such rapid rotation is believed to produce a long-duration GRB when its core collapses at the end of its life.

Notes

[1] Callingham, now at the Netherlands Institute for Radio Astronomy (ASTRON), did part of this research while at the University of Sydney working with research team leader Peter Tuthill. In addition to observations from ESO telescopes, the team also used the Anglo-Australian Telescope at Siding Spring Observatory, Australia.

More information:

This research was presented in a paper entitled “Anisotropic winds in Wolf-Rayet binary identify potential gamma-ray burst progenitor” which appeared in Nature Astronomy on 19 November 2018.

The team was composed of: J. R. Callingham (ASTRON, Dwingeloo, the Netherlands), P. G. Tuthill (Sydney Institute for Astronomy [SIfA], University of Sydney, Australia), B. J. S. Pope (SIfA; Center for Cosmology and Particle Physics, New York University, USA; NASA Sagan Fellow), P. M. Williams (Institute for Astronomy, University of Edinburgh, UK), P. A. Crowther (Department of Physics & Astronomy, University of Sheffield, UK), M. Edwards (SIfA), B. Norris (SIfA), and L. Kedziora-Chudczer (School of Physics, University of New South Wales, Australia).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It has 16 Member States: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and with Australia as a Strategic Partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.

Links:

ESOcast 185 Light: Cosmic Serpent: https://www.eso.org/public/videos/eso1838a/

Research paper: https://www.eso.org/public/archives/releases/sciencepapers/eso1838/eso1838a.pdf

Photos of the VLT: http://www.eso.org/public/images/archive/category/paranal/

Behind the Paper blog post: https://astronomycommunity.nature.com/users/181582-joseph-callingham/posts/40890-riding-the-serpent-the-discovery-and-study-of-apep

ESO’s Very Large Telescope (VLT): https://www.eso.org/public/teles-instr/paranal-observatory/vlt/

VISIR: https://www.eso.org/public/teles-instr/paranal-observatory/vlt/vlt-instr/visir/

ASTRON: https://www.astron.nl/

Anglo-Australian Telescope: https://en.wikipedia.org/wiki/Anglo-Australian_Telescope

Siding Spring Observatory: https://en.wikipedia.org/wiki/Siding_Spring_Observatory

Images, Text, Credits: ESO/Calum Turner/ASTRON/Joseph Callingham/IAU and Sky & Telescope/Digitized Sky Survey 2. Acknowledgment: Davide De Martin/Video: ESO/Digitized Sky Survey 2/N. Risinger (skysurvey.org). Music: astral electronic.

Greetings, Orbiter.ch
Full article

Russian space freighter docks with ISS in auto…

Moscow (Sputnik) Nov 20, 2018

The Progress MS-10 space freighter docked on Sunday with the International Space Stations (ISS) in an automatic mode, the Mission Control Center said.

On Friday, the Russian Soyuz-FG launch vehicle with the Progress MS-10 space freighter lifted off from the Baikonur space centre in Kazakhstan for the first time since the failed launch in October.
“The docking took place,” an announcer of
Full article

Photo

Photo

20 Years Ago, Construction Began on the Intern…

20 Years Ago, Construction Began on the International Space Station via NASA https://ift.tt/2FwYCmt

X-Rays from the Whirlpool (desktop/laptop)Cli…

X-Rays from the Whirlpool (desktop/laptop)

Click the image to download the correct size for your desktop or laptop in high resolution

Photo

Photo